Impact of IT identity and data privacy on mobile telemedicine use: A UTAUT perspective

Nyana Vaddhano(1*),

(1) Widya Mandala Surabaya Catholic University
(*) Corresponding Author

Abstract


The purpose of this study is to identify potential determinants of the intention to use mobile telemedicine applications. We gathered a total of 187 responses from smartphone users who expressed interest in utilizing Halodoc mobile telemedicine application. This study analyzed the acquired data using PLS-SEM and employed Importance-Performance Mapping (IPMA) to propose possible managerial enhancements for developers of mobile telemedicine applications. Performance expectancy and facilitating conditions have a substantial impact on users' attitude toward mobile telemedicine applications, according to the findings of the study. Usage intention is not directly influenced by performance expectancy or facilitating conditions. While effort expectancy has no effect on attitude, it has a substantial impact on usage intention. The impact of social influence on attitude and behavioral intention is predominantly positive. Data privacy, in contrast to IT identity, does not have a positive impact on usage intention. In general, a favorable attitude toward the application positively influences the user's intent to use mobile telemedicine applications.


Keywords


Telemedicine; UTAUT; IT Identity; Data Privacy; Technology Acceptance

Full Text:

PDF

References


Aburumman, O. J., Omar, K., Al Shbail, M., & Aldoghan, M. (2023). How to Deal with the Results of PLS-SEM? Explore Business, Technology Opportunities and Challenges‎ After the Covid-19 Pandemic (pp. 1196–1206). Springer.

Ajzen, I., & Fishbein, M. (1975). A Bayesian analysis of attribution processes. Psychological Bulletin, 82(2), 261–277. https://doi.org/10.1037/h0076477

Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99–110. https://doi.org/10.1016/j.ijinfomgt.2017.01.002

Alam, M. Z., Hu, W., Kaium, M. A., Hoque, M. R., & Alam, M. M. D. (2020). Understanding the determinants of mHealth apps adoption in Bangladesh: A SEM-Neural network approach. Technology in Society, 61, 101255. https://doi.org/10.1016/j.techsoc.2020.101255

Alexandra, S., Handayani, P. W., & Azzahro, F. (2021). Indonesian hospital telemedicine acceptance model: the influence of user behavior and technological dimensions. Heliyon, 7(12), e08599. https://doi.org/10.1016/j.heliyon.2021.e08599

Allah Pitchay, A., Ganesan, Y., Zulkifli, N. S., & Khaliq, A. (2022). Determinants of customers’ intention to use online food delivery application through smartphone in Malaysia. British Food Journal, 124(3), 732–753. https://doi.org/10.1108/BFJ-01-2021-0075

Arafat, M. Y., Zaman, S., & Hawlader, M. D. H. (2021). Telemedicine improves mental health in COVID-19 pandemic. Journal of Global Health, 11, 03004. https://doi.org/10.7189/jogh.11.03004

Aziz, M. A. A. A., Bakar, M. F. A., Zaaba, M. K., & Hassan, F. (2019). The Influence of Theory of Planned Behavior, Religion and Halal Certification on Consumers’ Purchase Intention of Halal Food at Restaurant in Subang Jaya. In Contemporary Management and Science Issues in the Halal Industry (pp. 53–63). Springer Singapore. https://doi.org/10.1007/978-981-13-2677-6_5

Azizam, N. A., Dzulkipli, M. R., Shamimi, N. I., Maon, S. N., John, D., Belawing, J., Jawa, J., & Yahaya, N. (2020). Applicability of theory of planned behavior and protection motivation theory in predicting intention to purchase health insurance. Advances in Business Research International Journal, 6(1), 1–9.

Balapour, A., Reychav, I., Sabherwal, R., & Azuri, J. (2019). Mobile technology identity and self-efficacy: Implications for the adoption of clinically supported mobile health apps. International Journal of Information Management, 49, 58–68. https://doi.org/10.1016/j.ijinfomgt.2019.03.005

Baudier, P., Kondrateva, G., Ammi, C., Chang, V., & Schiavone, F. (2023). Digital transformation of healthcare during the COVID-19 pandemic: Patients’ teleconsultation acceptance and trusting beliefs. Technovation, 120, 102547. https://doi.org/10.1016/j.technovation.2022.102547

Blok, M., van Ingen, E., de Boer, A. H., & Slootman, M. (2020). The use of information and communication technologies by older people with cognitive impairments: from barriers to benefits. Computers in Human Behavior, 104, 106173. https://doi.org/10.1016/j.chb.2019.106173

Brandford Bervell, B., Kumar, J. A., Arkorful, V., Agyapong, E. M., & Osman, S. (2021). Remodelling the role of facilitating conditions for Google Classroom acceptance: A revision of UTAUT2. Australasian Journal of Educational Technology, 115–135. https://doi.org/10.14742/ajet.7178

Busalim, A. H., Ghabban, F., & Hussin, A. R. C. (2021). Customer engagement behaviour on social commerce platforms: An empirical study. Technology in Society, 64, 101437. https://doi.org/10.1016/j.techsoc.2020.101437

Carter, M., & Grover, V. (2015). Conceptualizing Information Technology Identity and its Implications. MIS Quarterly, 39(4), 931–958. https://www.jstor.org/stable/26628658

Carter, M., Petter, S., Grover, V., & Thatcher, J. B. (2020). Information Technology Identity: A Key Determinant of IT Feature and Exploratory Usage. MIS Quarterly, 44(3), 983–1021. https://doi.org/10.25300/MISQ/2020/14607

Chakava, M. H., Mberia, H. K., & Gatero, G. (2018). Relationship between Performance Expectancy and Use of New Media in Scholarly Communication by Academic Staff in Public Universities in Kenya. IOSR Journal of Humanities And Social Science, 23(6), 49–59.

Chan, K., Cheung, G., Brown, I., & Luk, G. (2015). Synthesizing technology adoption and learners’ approaches towards active learning in higher education. International Conference on E-Learning, 66.

Colicev, A., De Giovanni, P., & Vinzi, V. E. (2016). An empirical investigation of the antecedents of partnering capability. International Journal of Production Economics, 178, 144–153. https://doi.org/10.1016/j.ijpe.2016.05.013

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982–1003. https://doi.org/10.1287/mnsc.35.8.982

Duarte, P., & Pinho, J. C. (2019). A mixed methods UTAUT2-based approach to assess mobile health adoption. Journal of Business Research, 102, 140–150. https://doi.org/10.1016/j.jbusres.2019.05.022

Dwivedi, Y. K., Rana, N. P., Janssen, M., Lal, B., Williams, M. D., & Clement, M. (2017). An empirical validation of a unified model of electronic government adoption (UMEGA). Government Information Quarterly, 34(2), 211–230. https://doi.org/10.1016/j.giq.2017.03.001

Effendy, F., Hurriyati, R., & Hendrayati, H. (2021). Perceived Usefulness, Perceived Ease of Use, and Social Influence: Intention to Use e-Wallet. https://doi.org/10.2991/aebmr.k.210831.060

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate Data Analysis: International Edition (7th ed.). Pearson Education Limited.

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203

Hung, D. N., Tham, J., Azam, S. M. F., & Khatibi, A. A. (2019). An Empirical Analysis of Perceived Transaction Convenience, Performance Expectancy, Effort Expectancy and Behavior Intention to Mobile Payment of Cambodian Users. International Journal of Marketing Studies, 11(4), 77. https://doi.org/10.5539/ijms.v11n4p77

Hutabarat, Z., Suryawan, I. N., Andrew, R., & Akwila, F. P. (2021). Effect Of Performance Expectancy And Social Influence On Continuance Intention In OVO. Jurnal Manajemen, 25(1), 125. https://doi.org/10.24912/jm.v25i1.707

Hwei, L. R. Y., & Octavius, G. S. (2021). Potential advantages and disadvantages of telemedicine: A literature review from the perspectives of patients, medical personnel, and hospitals. Journal of Community Empowerment for Health, 4(3), 228. https://doi.org/10.22146/jcoemph.64247

Kamal, S. A., Shafiq, M., & Kakria, P. (2020). Investigating acceptance of telemedicine services through an extended technology acceptance model (TAM). Technology in Society, 60, 101212. https://doi.org/10.1016/j.techsoc.2019.101212

Katadata. (2022). “Jumlah Pengguna Baru layanan telemedicine Capai 44% dalam 6 bulan.” Https://Katadata.Co.Id/Desysetyowati/Digital/624e9b8b96669/Jumlah-Pengguna-Baru-Layanan-Telemedicine-Capai-44-Dalam-6-Bulan.

Keith, M. J., Thompson, S. C., Hale, J., Lowry, P. B., & Greer, C. (2013). Information disclosure on mobile devices: Re-examining privacy calculus with actual user behavior. International Journal of Human-Computer Studies, 71(12), 1163–1173. https://doi.org/10.1016/j.ijhcs.2013.08.016

Kichloo, A., Albosta, M., Dettloff, K., Wani, F., El-Amir, Z., Singh, J., Aljadah, M., Chakinala, R. C., Kanugula, A. K., Solanki, S., & Chugh, S. (2020). Telemedicine, the current COVID-19 pandemic and the future: a narrative review and perspectives moving forward in the USA. Family Medicine and Community Health, 8(3), e000530. https://doi.org/10.1136/fmch-2020-000530

Kompas. (2022). Dealing with Shortage of Medical Doctors in Indonesia. https://Www.Kompas.Id/Baca/English/2022/07/20/Dealing-with-Shortage-of-Medical-Doctors-in-Indonesia .

Lee, P. S., Koo, S., & Panter, S. (2021). The Value of Physical Examination in the Era of Telemedicine. Journal of the Royal College of Physicians of Edinburgh, 51(1), 85–90. https://doi.org/10.4997/jrcpe.2021.122

Lee, S. W., Sung, H. J., & Jeon, H. M. (2019). Determinants of Continuous Intention on Food Delivery Apps: Extending UTAUT2 with Information Quality. Sustainability, 11(11), 3141. https://doi.org/10.3390/su11113141

Lee, W. J., & Shin, S. J. (2019). An Empirical Study of Consumer Adoption of Internet of Things Services. International Journal of Engineering and Technology Innovation, 9(1), 1–11.

Limna, P., Siripipatthanakul, S., Siripipattanakul, S., & Auttawechasakoon, P. (2023). The UTAUT Model Explaining Intentions to Use Telemedicine Among Thai People During the COVID-19 Pandemic: A Qualitative Study in Krabi, Thailand. International Journal of Computing Sciences Research, 7, 1468–1486. https://doi.org/10.25147/ijcsr.2017.001.1.111

Lu, H.-H., Lin, W.-S., Raphael, C., & Wen, M.-J. (2023). A study investigating user adoptive behavior and the continuance intention to use mobile health applications during the COVID-19 pandemic era: Evidence from the telemedicine applications utilized in Indonesia. Asia Pacific Management Review, 28(1), 52–59. https://doi.org/10.1016/j.apmrv.2022.02.002

Malliaras, P., Merolli, M., Williams, C. M., Caneiro, J. P., Haines, T., & Barton, C. (2021). ‘It’s not hands-on therapy, so it’s very limited’: Telehealth use and views among allied health clinicians during the coronavirus pandemic. Musculoskeletal Science and Practice, 52, 102340. https://doi.org/10.1016/j.msksp.2021.102340

Mangku, D. G. S., Yuliartini, N. P. R., Suastika, I. N., & Wirawan, I. G. M. A. S. (2021). The Personal Data Protection of Internet Users in Indonesia. Journal of Southwest Jiaotong University, 56(1). https://doi.org/10.35741/issn.0258-2724.56.1.23

Napitupulu, D., Yacub, R., & Putra, A. (2021). Factor Influencing of Telehealth Acceptance During COVID-19 Outbreak: Extending UTAUT Model. International Journal of Intelligent Engineering and Systems, 14(3), 267–281. https://doi.org/10.22266/ijies2021.0630.23

Nawarini, A. T., Rabbani, I., & Novandari, W. (2022). Telemedicine adoption during pandemic Covid19 in Indonesia. Int. J. Econ. Bus. Manag. Res, 6(10), 161–171.

Palau-Saumell, R., Forgas-Coll, S., Sánchez-García, J., & Robres, E. (2019). User Acceptance of Mobile Apps for Restaurants: An Expanded and Extended UTAUT-2. Sustainability, 11(4), 1210. https://doi.org/10.3390/su11041210

Pangaribuan, C., & Wulandar, Y. (2019). A Crowdfunding Platform User Acceptance: An Empirical Examination Of Performance Expectancy, Effort Expectancy, Social Factors, Facilitating Condition, Attitude, And Behavioral Intention. Proceedings of the Proceedings of the 1st Sampoerna University-AFBE International Conference, SU-AFBE 2018, 6-7 December 2018, Jakarta Indonesia. https://doi.org/10.4108/eai.6-12-2018.2286301

Rahi, S., & Abd.Ghani, M. (2019). Investigating the role of UTAUT and e-service quality in internet banking adoption setting. The TQM Journal, 31(3), 491–506. https://doi.org/10.1108/TQM-02-2018-0018

Rahi, S., Khan, M. M., & Alghizzawi, M. (2021). Factors influencing the adoption of telemedicine health services during COVID-19 pandemic crisis: an integrative research model. Enterprise Information Systems, 15(6), 769–793. https://doi.org/10.1080/17517575.2020.1850872

Rahi, S., Othman Mansour, M. M., Alghizzawi, M., & Alnaser, F. M. (2019). Integration of UTAUT model in internet banking adoption context. Journal of Research in Interactive Marketing, 13(3), 411–435. https://doi.org/10.1108/JRIM-02-2018-0032

Rasoolimanesh, S. M. (2022). Discriminant validity assessment in PLS-SEM: A comprehensive composite-based approach. Data Analysis Perspectives Journal, 3(2), 1–8.

Reed, A., Forehand, M. R., Puntoni, S., & Warlop, L. (2012). Identity-based consumer behavior. International Journal of Research in Marketing, 29(4), 310–321. https://doi.org/10.1016/j.ijresmar.2012.08.002

Ringle, C. M., & Sarstedt, M. (2016). Gain more insight from your PLS-SEM results. Industrial Management & Data Systems, 116(9), 1865–1886. https://doi.org/10.1108/IMDS-10-2015-0449

Risher, J., & Hair Jr, J. F. (2017). The robustness of PLS across disciplines. Academy of Business Journal, 1, 47–55.

Sair, S. A., & Danish, R. Q. (2018). Effect of performance expectancy and effort expectancy on the mobile commerce adoption intention through personal innovativeness among Pakistani consumers. Pakistan Journal of Commerce and Social Sciences (PJCSS), 12(2), 501–520.

Sarstedt, M., Hair, J. F., Cheah, J.-H., Becker, J.-M., & Ringle, C. M. (2019). How to Specify, Estimate, and Validate Higher-Order Constructs in PLS-SEM. Australasian Marketing Journal, 27(3), 197–211. https://doi.org/10.1016/j.ausmj.2019.05.003

Schmitz, A., Díaz-Martín, A. M., & Yagüe Guillén, M. J. (2022). Modifying UTAUT2 for a cross-country comparison of telemedicine adoption. Computers in Human Behavior, 130, 107183. https://doi.org/10.1016/j.chb.2022.107183

Shaikh, A. A., Glavee-Geo, R., & Karjaluoto, H. (2021). How Relevant Are Risk Perceptions, Effort, and Performance Expectancy in Mobile Banking Adoption? In Research Anthology on Securing Mobile Technologies and Applications (pp. 692–716). IGI Global. https://doi.org/10.4018/978-1-7998-8545-0.ch038

Venkatesh, Morris, Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540

Venkatesh, Thong, & Xu. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157. https://doi.org/10.2307/41410412

Wang, T., Duong, T. D., & Chen, C. C. (2016). Intention to disclose personal information via mobile applications: A privacy calculus perspective. International Journal of Information Management, 36(4), 531–542. https://doi.org/10.1016/j.ijinfomgt.2016.03.003

Whitley, E. A., Gal, U., & Kjaergaard, A. (2014). Who do you think you are? A review of the complex interplay between information systems, identification and identity. European Journal of Information Systems, 23(1), 17–35. https://doi.org/10.1057/ejis.2013.34

Wu, C., Zhou, Y., Wang, R., Huang, S., & Yuan, Q. (2022). Understanding the Mechanism Between IT Identity, IT Mindfulness and Mobile Health Technology Continuance Intention: An Extended Expectation Confirmation Model. Technological Forecasting and Social Change, 176, 121449. https://doi.org/10.1016/j.techfore.2021.121449

Zhang, T., Tao, D., Qu, X., Zhang, X., Zeng, J., Zhu, H., & Zhu, H. (2020). Automated vehicle acceptance in China: Social influence and initial trust are key determinants. Transportation Research Part C: Emerging Technologies, 112, 220–233. https://doi.org/10.1016/j.trc.2020.01.027

Zin, K. S. L. T., Kim, S., Kim, H.-S., & Feyissa, I. F. (2023). A Study on Technology Acceptance of Digital Healthcare among Older Korean Adults Using Extended Tam (Extended Technology Acceptance Model). Administrative Sciences, 13(2), 42. https://doi.org/10.3390/admsci13020042

Zobair, K. M., Sanzogni, L., Houghton, L., Sandhu, K., & Islam, M. J. (2021). Health Seekers’ Acceptance and Adoption Determinants of Telemedicine in Emerging Economies. Australasian Journal of Information Systems, 25. https://doi.org/10.3127/ajis.v25i0.3071




DOI: https://doi.org/10.24123/mabis.v23i2.832

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Nyana Vaddhano

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License. ISSN: 1412-3789. e-ISSN: 2477-1783.

Google ScholarGoogle ScholarGARUDA - Garba Rujukan Digital
DOAJ
ROADROADEBSCO
mabis statistics