Elevating satisfaction: Unleashing the power of ChatGPT with personalization, relevance, accuracy, convenience,and tech familiarity

Eva Novita Sari(1*), Lizar Alfansi(2),

(1) Universitas Bengkulu
(2) Universitas Bengkulu
(*) Corresponding Author


ChatGPT lacks a human supervision system to review and check all its outputs, along the way of its ability, studies found that AI conversation models might have a positive impact on various aspects of the customer experience. Therefore, this research aims to investigate the role of familiarity of technology as the mediation which accommodate the relation between perceived personalization, perceived relevant, perceived accuracy, perceived convenience toward overall satisfaction. This research was analysed by Structured Equation Modelling in the basis of Partial Least Square (SEM-PLS). Carrying 318 respondents of ChatGPT user in Indonesia. The findings of this research indicates that perceived personalization, perceived relevant, perceived accuracy, perceived convenience positively and significantly influence the familiarity with technology. Furthermore, the familiarity of technology has also positive and significant influenced the overall satisfaction. By then, this research found that the familiarity with technology in ChatGPT has partially mediates the relationship between exogenous variables on endogenous variable.


Familiarity with technology; Perceived personalization; Perceived relevant; Perceived accuracy; Perceived convenience; Overall Satisfaction.

Full Text:



Abdelkader, O. A. (2023). ChatGPT’s influence on customer experience in digital marketing: Investigating the moderating roles. Heliyon, 9(8).

Akdim, K., Casaló, L. V., & Flavián, C. (2022). The role of utilitarian and hedonic aspects in the continuance intention to use social mobile apps. Journal of Retailing and Consumer Services, 66, 102888.


Arviollisa, P. A. D., Chan, A., & Nirmalasari, H. (2021). Pengaruh Artificial Intelligence Terhadap Customer Experience (Studi Pada Pengguna Gojek Bandung, Jawa Barat). AdBispreneur: Jurnal Pemikiran Dan Penelitian Administrasi Bisnis Dan Kewirausahaan, 6(2), 115–124.

Askari, S., Peiravian, F., Tilahun, N., & Yousefi Baseri, M. (2021). Determinants of users’ perceived taxi service quality in the context of a developing country. Transportation Letters, 13(2), 125-137.

Aw, E. C. X., Tan, G. W. H., Cham, T. H., Raman, R., & Ooi, K. B. (2022). Alexa, what's on my shopping list? Transforming customer experience with digital voice assistants. Technological Forecasting and Social Change, 180, 12171.

Bagdare, S., & Jain, R. (2013). Measuring retail customer experience. International Journal of Retail & Distribution Management, 41(10), 790–804.

Bailey, J. E., & Pearson, S. W. (1983). Development of a tool for measuring and analyzing computer user satisfaction. Management Science, 29(5), 530–545.

Bansah, A. K., & Darko Agyei, D. (2022). Perceived convenience, usefulness, effectiveness and user acceptance of information technology: evaluating students’ experiences of a Learning Management System. Technology, Pedagogy and Education, 31(4), 431-449.

Barbu, C. M., Florea, D. L., Dabija, D. C., & Barbu, M. C. R. (2021). Customer experience in fintech. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1415-1433.

Basu, A., Mandal, P. C., Murti, A. B., & Makany, T. (2022). Shaping OTT Movie Consumption through Immersive Cinema: A Qualitative Investigation of Consumer Perspectives. Vision, 09722629221138375.

Bleier, A., De Keyser, A., & Verleye, K. (2018). Customer engagement through personalization and customization. Customer engagement marketing, 75-94.

Borji, A. (2023). A categorical archive of chatgpt failures. ArXiv Preprint ArXiv:2302.03494.

Chen, L., Jiang, M., Jia, F., & Liu, G. (2022). Artificial intelligence adoption in business-to-business marketing: toward a conceptual framework. Journal of Business & Industrial Marketing, 37(5), 1025–1044.

Chen, T., Guo, W., Gao, X., & Liang, Z. (2021). AI-based self-service technology in public service delivery: User experience and influencing factors. Government Information Quarterly, 38(4), 101520.

De Feyter, H. M., Behar, K. L., Corbin, Z. A., Fulbright, R. K., Brown, P. B., McIntyre, S., Nixon, T. W., Rothman, D. L., & de Graaf, R. A. (2018). Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo. Science Advances, 4(8), eaat7314.

DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of Management Information Systems, 19(4), 9–30.

El-Ansari, A., & Beni-Hssane, A. (2023). Sentiment Analysis for Personalized Chatbots in E-Commerce Applications. Wireless Personal Communications, 129(3), 1623-1644.

Felix, A., & Rembulan, G. D. (2023). Analysis of Key Factors for Improved Customer Experience, Engagement, and Loyalty in the E-Commerce Industry in Indonesia. Aptisi Transactions on Technopreneurship (ATT), 5(2sp), 196-208.

Ferdinand, A. (2005). Structural equation modeling dalam penelitian manajemen: aplikasi model-model rumit dalam penelitian untuk Tesis Magister & Disertasi Doktor. Language, 3(390p), 24cm.

Forster, Y., Hergeth, S., Naujoks, F., Krems, J. F., & Keinath, A. (2020). What and how to tell beforehand: The effect of user education on understanding, interaction and satisfaction with driving automation. Transportation research part F: traffic psychology and behaviour, 68, 316-335.

George, A. S., & George, A. S. H. (2023). A review of ChatGPT AI’s impact on several business sectors. Partners Universal International Innovation Journal, 1(1), 9–23.

Gnewuch, U., Morana, S., Adam, M., & Maedche, A. (2018). Faster is not always better: understanding the effect of dynamic response delays in human-chatbot interaction.

Hoyer, W. D., Kroschke, M., Schmitt, B., Kraume, K., & Shankar, V. (2020). Transforming the customer experience through new technologies. Journal of interactive marketing, 51(1), 57-71.

Iancu, I., & Iancu, B. (2020). Designing mobile technology for elderly. A theoretical overview. Technological Forecasting and Social Change, 155, 119977.

Jacob, C., Sanchez-Vazquez, A., & Ivory, C. (2020). Social, organizational, and technological factors impacting clinicians’ adoption of mobile health tools: systematic literature review. JMIR mHealth and uHealth, 8(2), e15935.

Jung, Y., Kim, H. L., & Hyun, S. S. (2022). The Impact of Airline’s Smart Work System on Job Performance of Cabin Crew. International Journal of Environmental Research and Public Health, 19(19), 12414.

Kalla, D., & Smith, N. (2023). Study and Analysis of Chat GPT and its Impact on Different Fields of Study. International Journal of Innovative Science and Research Technology, 8(3).

Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., & Hüllermeier, E. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274.

Kim, R. B., Matsui, T., Park, Y. J., & Okutani, T. (2019). Perceived consumer value of omni-channel service attributes in Japan and Korea. Engineering Economics, 30(5), 621-630.

Kwon, Y., Park, J., & Son, J. Y. (2021). Accurately or accidentally? Recommendation agent and search experience in over-the-top (OTT) services. Internet Research, 31(2), 562-586.

Lam, J. M., Ismail, H., & Lee, S. (2020). From desktop to destination: User-generated content platforms, co-created online experiences, destination image and satisfaction. Journal of Destination Marketing & Management, 18, 100490.

Li, Q., & Luximon, Y. (2020). Older adults’ use of mobile device: usability challenges while navigating various interfaces. Behaviour & Information Technology, 39(8), 837-861.

Lin, Y. L., & Lu, H. P. (2020). The effectiveness of website builders on website development: A study of novice users. Journal of Computer Information Systems, 60(4).

McCarthy, M. A. (2007). Bayesian methods for ecology. Cambridge University Press.

McColl-Kennedy, J. R., Zaki, M., Lemon, K. N., Urmetzer, F., & Neely, A. (2019). Gaining customer experience insights that matter. Journal of Service Research, 22(1), 8–26.

Mijwil, M., & Aljanabi, M. (2023). Towards artificial intelligence-based cybersecurity: the practices and ChatGPT generated ways to combat cybercrime. Iraqi Journal For Computer Science and Mathematics, 4(1), 65–70.

Min, H. (2021). Exploring omni-channels for customer-centric e-tailing. Logistics, 5(2), 31.

Nambisan, S., Lyytinen, K., & Yoo, Y. (2020). Digital innovation: towards a transdisciplinary perspective. Handbook of Digital Innovation, 2–12.

Osmundsen, K. S., Meske, C., & Thapa, D. (2022). Familiarity with digital twin totality: Exploring the relation and perception of affordances through a Heideggerian perspective. Information Systems Journal, 32(5), 1064-1091.

Pang, S., Bao, P., Hao, W., Kim, J., & Gu, W. (2020). Knowledge sharing platforms: An empirical study of the factors affecting continued use intention. Sustainability, 12(6), 2341.

Parise, S., Guinan, P. J., & Kafka, R. (2016). Solving the crisis of immediacy: How digital technology can transform the customer experience. Business Horizons, 59(4), 411–420.

Prasetyo, Y. T., Tanto, H., Mariyanto, M., Hanjaya, C., Young, M. N., Persada, S. F., ... & Redi, A. A. N. P. (2021). Factors affecting customer satisfaction and loyalty in online food delivery service during the COVID-19 pandemic: Its relation with open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 76.

Qing, W., Amin, M. B., Gazi, M. A. I., Khan, W., Al Masud, A., & Alam, M. N. (2023). Mediation Effect of Technology Adaptation Capabilities Between the Relationship of Service Quality Attributes and Customer Satisfaction: An Investigation on Young Customers Perceptions Toward E-Commerce in China. IEEE Access, 11, 123904-123923.

Riegger, A. S., Klein, J. F., Merfeld, K., & Henkel, S. (2021). Technology-enabled personalization in retail stores: Understanding drivers and barriers. Journal of Business Research, 123, 140-155.

Saraswati, P. D. S. (2020). Determinan minat penggunaan e-wallet OVO pada transportasi online Grab. Universitas Pendidikan Ganesha.

Shin, D. (2020). User perceptions of algorithmic decisions in the personalized AI system: Perceptual evaluation of fairness, accountability, transparency, and explainability. Journal of Broadcasting & Electronic Media, 64(4), 541-565.

Shin, D., Zhong, B., & Biocca, F. A. (2020). Beyond user experience: What constitutes algorithmic experiences?. International Journal of Information Management, 52, 102061.


Skjuve, M., Følstad, A., & Brandtzaeg, P. B. (2023, July). The user experience of ChatGPT: Findings from a questionnaire study of early users. In Proceedings of the 5th International Conference on Conversational User Interfaces (pp. 1-10).

Tamara, C. A. J., Tumbuan, W. J. A., & Gunawan, E. M. (2023). CHATBOTS IN E-COMMERCE: A STUDY OF GEN Z CUSTOMER EXPERIENCE AND ENGAGEMENT–FRIEND OR FOE?. Jurnal EMBA: Jurnal Riset Ekonomi, Manajemen, Bisnis dan Akuntansi, 11(3), 161-175.

Tate, M., Evermann, J., & Gable, G. (2015). An integrated framework for theories of individual attitudes toward technology. Information & Management, 52(6), 710-727.

Trivedi, J. (2019). Examining the customer experience of using banking chatbots and its impact on brand love: The moderating role of perceived risk. Journal of Internet Commerce, 18(1), 91–111.

Uzir, M. U. H., Al Halbusi, H., Lim, R., Jerin, I., Hamid, A. B. A., Ramayah, T., & Haque, A. (2021). Applied Artificial Intelligence and user satisfaction: Smartwatch usage for healthcare in Bangladesh during COVID-19. Technology in society, 67, 101780.

Verhoef, P. C., Lemon, K. N., Parasuraman, A., Roggeveen, A., Tsiros, M., & Schlesinger, L. A. (2009). Customer experience creation: Determinants, dynamics and management strategies. Journal of Retailing, 85(1), 31–41.

Wulandari, O. A. D., Ujiani, U., & Putri, N. R. (2020). Analisis pemanfaatan marketplace dalam meningkatkan pendapatan bagi penjualan produk UMKM di Purbalingga. Jurnal Ekonomi Manajemen, 6(2), 96–101.

DOI: https://doi.org/10.24123/mabis.v23i1.739

Article Metrics

Abstract view : 75 times
PDF - 19 times


  • There are currently no refbacks.

Copyright (c) 2024 Eva Novita Sari, Lizar Alfansi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License. ISSN: 1412-3789. e-ISSN: 2477-1783.

Google ScholarGoogle ScholarGARUDA - Garba Rujukan Digital
mabis statistics